Engineers Gallery

Digital Signal Processing: Sampling and Discrete-time Signals

In my previous tutorial, I gave a brief idea about the fundamentals of digital signal processing. Now we are going to take a step further in this direction. To do the processing part we first need to understand discrete-time signals, classification and their operations. In this tutorial major emphasis will be given on Discrete-time signals and discrete-time systems.

What we are going to learn in this tutorial :-

      fs= 1/T , where fs is the sampling frequency.

      x(n)= Acos(?0n + Ø) ,           -?  < n < +?

x(n+N) = x(n)

or,    cos[2?f0(n+N) + Ø] = cos[2?f0(n) + Ø]

or,           2?f0N=2k?

or,           f0 =k/N

x2(t)  = Acos[(?0 +2?)n + Ø]= Acos(?n+2?n + Ø)= Acos(?0n + Ø)

|?|? ?

Or,      |f| ?   ½

Ananlog signal, xa(t) = A cos(2?Ft + Ø)

Discrete-time signal,    xa(nT) = A cos(2?FnT + Ø)

Or, xa(nT) = A cos(2?Fn/Fs + Ø)

|F/Fs| ? ½

Or,  |F| ? Fs/2

Thus we can clearly see that if the max. frequency of the signal is Fmax then the sampling frequency, Fs must be greater than twice Fmax. This is also known as Nyquist Rate of sampling. This is always to be remembered that Fs must be twice the “max.” frequency component of the signal not just any frequency of the signal otherwise it will  induce attenuation and signal distortion.

     Sampling Theorem: If the highest frequency contained in any analog signal xa(t) is Fmax=B and sampling is done at a frequency Fs > 2B, then xa(t) can be exactly recovered from its samples using the interpolation function,

G(t) = sin (2?Bt)/2?Bt

Thus,

 

 

Exit mobile version